В основном, жизнь информация о цвете похожа на коробку конфет карандашей ...
Информация о цвете хранится в целых числах, а не в аналоговых значениях - существует дискретное счетное количество цветов, которое можно описать с определенной битовой глубиной.
Думайте о цветовом пространстве как о коробке цветных карандашей разных цветов. Цветовое пространство описывает доступные типы карандашей . Подумайте о «смелых цветах», «пастелях» и т. П. Битовая глубина описывает число мелков.
Вот пример двух разных коробок с карандашами:
![crayonboxes](https://i.stack.imgur.com/vG2MW.png)
У обоих по 16 мелков, но у них разный диапазон цветов - в частности, нижний набор не распространяется так далеко в красный. Поскольку существует 16 цветов, это 4 бита глубины цвета (2 = 16).
«Реальное» цветовое пространство является трехмерным, и оно просто имеет одно измерение. (То есть оттенок.) Но это делает модель, которая, я надеюсь, помогает. Верхняя «коробка» имеет цветовое пространство, которое имеет очень красный «основной» цвет на крайних краях, а нижняя - только красновато-оранжевый.
Поначалу верхнее цветовое пространство кажется явно превосходящим (вы даже не можете нарисовать что-то красное с нижним!), Но рассмотрите ситуацию, когда вы рисуете пейзаж с небом, водой и деревьями. Нижний набор мелков на самом деле может быть намного лучше, потому что он использует больше своих «битов» для представления тонких оттенков зеленого и синего.
Если вместо. Вы купили те же цветовые диапазоны в наборах по 64 карандаша, между каждым существующим будет три новых карандаша. Нижний набор будет по-прежнему иметь больше опций для синего и зеленого, но из-за новых мелков в верхнем наборе также будет гораздо больше вариантов в этом диапазоне, чем в наборе из 16 мелков. Поскольку верхний набор также покрывает красный цвет, при достаточном количестве карандашей будет объективно лучше.
Однако можно представить себе выбор, когда в обеих коробках чего-то не хватает. Немного проще понять, как это может быть, если перейти к более сложной визуализации, в данном случае настоящего sRGB (в виде телевизора или монитора на уровне потребителя) и стандартных чернил «SWOP» CMYK:
![CMYK SWOP vs RGB — image by me, and lines are approximate](https://i.stack.imgur.com/Sc1OL.png)
Здесь вы можете видеть, что цветовое пространство CMYK SWOP¹ распространяется дальше на голубые, пурпурные / пурпурные и желтые цвета, которые могут быть представлены в sRGB. Даже если мы добавим больше битов, чтобы различать доступные различимые шаги, цветовое пространство определяет границу . Аналогично, добавление большего количества битов в представление CMYK не помогает представить дальние углы красного, зеленого и синего цветов, покрытые sRGB. (И, конечно, все из них - плохое представление гаммы человеческого зрения, представленной внешней формой - если вы когда-нибудь задумывались, почему так сложно получить цифровые фотографии зелени, чтобы выглядеть естественно, это часть истории!)
В реальной жизни 24-битные цветовые пространства (8 бит на канал) позволяют работать с 16,8 миллионами цветов. Как правило, это нормально, и многие считают, что на больше цветов, чем человеческий глаз может различить , но если ваше цветовое пространство действительно велико, вы можете получить тот же эффект, когда скачок между отдельными цветами в середине больше чем идеал, и вполне возможно, что это будет заметно в определенных ситуациях.
ВФактически, некоторые «широкие» цветовые пространства, такие как ProPhoto RGB, имеют по краям пространства цвета, которые не соответствуют ничему в человеческом зрении . Это теоретические, «мнимые» цвета, которые заставляют цветовое пространство работать, но эффективно теряются. Когда вы используете такое цветовое пространство с небольшим количеством цветных карандашей (малая глубина в битах), у вас есть меньше опций для действительно полезных цветов, что делает проблему пропуска шагов более проблематичной. Нечто похожее на sRGB не может охватить далеко идущие голубые и зеленые (как и отсутствующий красный в приведенном выше наборе), но взамен вы получите более тонкое различие между синим, пурпурным и красным (и зелеными, которые там есть).
Если мы перейдем к 16 битам на канал (всего 48 бит), в коробке будет отображено 16,8 миллиона дополнительных"мелков" между каждым оттенком. Это полное излишество (как в том, что люди могут отличить, так и в практической реальности представления этих тонких различий на экране или в печати), но это избыточное гарантирует, что плавные переходы всегда доступны. А поскольку в реальной жизни все цветовые пространства примерно рассчитаны на то, чтобы охватить человеческое зрение (даже если они точно не совпадают), вы действительно не сталкиваетесь с ситуацией, когда в вашем цветовом пространстве совсем нет красного - это может быть не таким глубоким или тонким.
Другая вещь, на которую стоит обратить внимание, заключается в том, что sRGB разработан не просто для достойного соответствия человеческому зрению, но чтобы быть представленным на большинстве потребительских устройств , и это стандартное предположение для неуправляемых цветов дисплей. Это означает, что когда вы используете sRGB, у вас больше шансов, что используемые вами «карандаши» будут соответствовать «карандашам», которые используют устройства ваших зрителей. Вот почему я рекомендую сохранять в sRGB для просмотра в Интернете и совместного использования - более высокая разрядность не является широко распространенным вариантом, и большинство людей не имеют возможности поменяться на набор карандашей по вашему выбору. (Надеюсь, в будущем это станет лучше, но на самом деле это не кажется приоритетом для производителей потребительских устройств. Может быть, когда установится шумиха в 3D и 4K, мы сможем уделять больше внимания «глубокому цвету» - более высокой глубине в битах для потребительские дисплеи.
(Часть этого заимствована из моего предыдущего ответа на Как перекрываются цветовые пространства, такие как sRGB и Adobe RGB? )
Сноска
1. Этот конкретный пример является упрощением и прикрывает реальное представление изображений CMYK и некоторые другие детали; тем не менее, это хороший пример, потому что большинство реальных цветовых пространств спроектированы так, чтобы максимально перекрываться, и это показывает что-то несоответствующее.